Technical Arsenal & Methodologies

Data Science & Machine Learning

  • Python - (Pandas, NumPy, SciPy, Scikit-learn, Statsmodels)
  • Machine Learning - (Supervised & Unsupervised Learning, Feature Engineering, Model Evaluation)
  • Deep Learning - (TensorFlow, Keras, PyTorch) - Familiarity with CNNs, RNNs/LSTMs
  • NLP - (Text Preprocessing, Sentiment Analysis, Topic Modeling - spaCy, NLTK, Hugging Face Transformers basics)
  • Computer Vision - (Image Classification, Object Detection basics - OpenCV)
  • Azure ML - (Workspace Setup, Experiment Tracking, Model Deployment, Endpoints)
  • MLOps - (Principles, CI/CD for ML, Monitoring - Azure DevOps, MLflow)
  • Statistical Modeling - (Hypothesis Testing, Regression Analysis)
  • Spark - (PySpark for large-scale data processing & ML)
  • Real-time Analytics - (Concepts, processing streaming data)

Data Engineering

  • Azure Databricks
  • Azure Synapse Analytics
  • Azure Data Factory (Pipelines, Data Flows)
  • Azure Data Lake Storage Gen2
  • ETL/ELT Pipeline Design & Implementation
  • Data Modeling & Warehousing (Kimball/Inmon concepts)
  • SQL & NoSQL Databases (SQL Server, Cosmos DB basics)
  • Streaming Data Processing (Kafka basics, Azure Stream Analytics basics)
  • Hadoop Ecosystem (Conceptual understanding)

Cloud Architecture

  • Azure Solutions Architecture (VNet, Compute, Storage, Security)
  • Infrastructure as Code (ARM Templates, Bicep - basics)
  • Azure DevOps (Repos, Pipelines for CI/CD)
  • GitHub Actions
  • Serverless Computing (Azure Functions)
  • Monitoring & Logging (Azure Monitor)
  • Cloud Security Best Practices

Business Intelligence

  • Power BI (Data Modeling, DAX, Report Development, Power Query)
  • Data Visualization Best Practices
  • Automated Reporting Solutions
  • Requirements Gathering & Stakeholder Interaction

Programming Languages

  • Python
  • SQL
  • PySpark
  • R - (Familiarity)
  • Scala - (Familiarity, especially within Spark)
  • Java - (Basic understanding)
  • C# - (Basic understanding)

Methodologies & Soft Skills

  • Agile/Scrum Methodologies
  • MLOps Lifecycle Management
  • CI/CD Practices
  • Version Control (Git, GitHub, Azure Repos)
  • Problem Solving & Analytical Thinking
  • Project Leadership & Task Management
  • Stakeholder Communication & Presentation
  • Team Collaboration & Mentoring
  • Technical Documentation
  • Continuous Learning & Adaptability